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Abstract 

Recent developments in translation-function methods 
have secured a priori estimates of the imaginary com- 
ponent of molecular transform products, which are 
here shown to permit improved estimates of crystal- 
structure phase invariants when the orientations, but 
not the positions, of conformationally known struc- 
tural fragments are available. Trial calculations indi- 
cate that the values of the triple-phase invariants 
computed from the phases of the oriented molecular 
transform products are indistinguishable from values 
of these invariants computed with the various orien- 
ted molecular structures at their true locations in the 
unit cell, provided that the fragments comprise half 
or more of the contents of the asymmetric unit. The 
~1 phases calculated for such structures are equal to 
the phases produced by the various properly posi- 
tioned fragments of the partial structure. These results 
imply that a unique direct-methods solution to deter- 
mine the positions of the fragments is virtually 
guaranteed for partial structures of this size or larger. 
The accuracy of the computed triple invariants for 
smaller fragments, comprising about one quarter or 
less of the contents of the asymmetric unit, remains 
sufficiently better than the corresponding ab initio 
direct-methods estimates, and should provide a more 
reliable basis for determining the positions of the 
fragments by multi-solution procedures. Computed 
phase-invariant procedures should possess an impor- 
tant advantage over translation-function methods in 
applications which involve multiple fragments of 
known orientation. 

Introduction 

Often in the course of crystal-structure analysis one 
may obtain information that reveals the orientation 
of an anticipated molecular structure, or fragment 
thereof, often not at its true location within the unit 
cell. In such circumstances the tangent formula 
recycling of molecular-fragment phases (Karle, 1968) 
will not converge on an acceptable solution and it 
may be necessary to apply a translation function for 
the purpose of properly locating the fragment in order 
to proceed with the tangent formula, as suggested by 
Karle (1972). An alternative procedure is to reduce 
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artificially the symmetry of the space group to elimi- 
nate the displacement vector and re-establish the posi- 
tions of these symmetry elements after attempting to 
produce a solution in the lower symmetry (see, for 
example, Karle & Karle, 1971; Flippen, 1973). 

A less commonly employed procedure is to use the 
known structural information to reassess the reliabil- 
ity of the direct-methods phase relationships and 
avoid suspect phase invariants in a redetermination 
of the structure. The earliest attempt to improve the 
algebraic estimates of Karle & Hauptman (1957) of 
the triple-phase cosine invariants was based on pre- 
sumed known molecular fragments in the absence of 
orientational information (Hauptman, 1964). Sub- 
sequent investigations have emphasized cosine- 
invariant analysis for structures of known conforma- 
tional orientation (Kroon & Krabbendam, 1970; 
Thiessen & Busing, 1974; Main, 1976) as such studies 
were found to provide more reliable results than those 
that lacked information on molecular orientation. In 
a study by Langs (1974) exact algebraic equations for 
crystal-structure invariants were derived utilizing 
molecular transform notation. This notation sim- 
plified the computations used by Kroon & Krabben- 
dam and further clarified the work of Thiessen & 
Busing in that it identified their phase-determining 
transforms as the leading dominant main terms of 
these exact algebraic identities. The utility of these 
full algebraic identities was limited, however, in that 
there was a 2N-fold ambiguity in the value of an 
N-phase crystal-structure invariant since the equation 
contained N different sine terms, which at best were 
known in magnitude only. Recent developments in 
translation-function analysis have now provided a 
technique for evaluating the signed value of these 
sine terms (Langs, 1985) and thus make it possible 
to obtain single-valued estimates of crystal-structure 
invariants via these algebraic formulae. 

Background 

The phased crystallographic structure factors, E~, are 
readily expressed in terms of the transforms of 
oriented molecular fragments, Ebp, and displacement 
vectors, rp, which relate the arbitrary coordinates of 
the transform, rip, to the crystallographic coordinates 
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of the correctly positioned group, rj, as rj = rp  +rip. 
The diffraction amplitudes are here expressed as I EI 
values normalized with respect to the entire contents 
of the pr imi t ive  equivalent unit cell, the derived 
expressions are equally valid for data expressed by 
means of IFI. 

_ . ~  2h.t. E h ~ ( -1 )  iEh~pexp2wihj.rp, (1) 
J p 

where t h e j  index runs over the n equivalent primitive 
positions of the space group, tj is the translation 
symmetry operator for the j th  equivalent position, 
and the p index runs over m different oriented 
molecular fragments or molecules that comprise tile 
entire contents of the asymmetric portion of the unit 
cell. The various hj are related to h by the transpose 
of the inverse of the rotation matrix, R j, of the j th  
equivalent position. Three-phase structure products 

EhEkEI ~ (--1)2(h'tj+kt"+"tr)EhjpEk~,p,E, rp,, 
J p 
Xexp 2~ri(hj.rp+kj,.rp,+lj,,.rp,,) (2) 

are calculable, provided one has reliable estimates 
for the various phase components hi. rp, which are 
generally unknown. In the absence of such informa- 
tion there still exist certain main terms in (2) that 
arise when the argument of the exponential is sure 
to vanish, that is when j = j '  = j "  and p = p ' =  p", such 
that 

shown to be 
m 

.-... t / .) 1~ EhEkE, ~ E  ( - - 1 )  2 (h ' t )+k ' t f+ ' "  " C.hjpEk,,pE, j.pl 
J p 

X (exp ( Ohjpj,.p + Okj.pj..p + ~b.p) 
+ exp ( Ohjpj, p "t- Olj.pfp -[- ~k j ,p  ) 

+ exp (Ok,.pip + Ob.,jp + 4~hj,)), 

where 

(6) 

I~hj p = ~Ohj p "l t- ~Okj p "1- ~Ol)p, 

and because of the twofold ambiguity in the sign of 
the sine components of the three exponential terms 
leads to a 23-fold ambiguity in the estimate of a 
particular three-phase invariant. Given that reliable 
absolute values of Oh,pkq are now in principle deter- 
minable from the initial values of Gh (Langs, 1985), 
(6) is now seen to produce a unique estimate, which 
is either (i) the value of the crystal-structure invariant 
when the trial molecule p comprises the entire con- 
tents of the asymmetric unit or (ii) the value of the 
structure invariant computed with this partial struc- 
ture at its correct location in the unit cell when the 
structure represents a fragment of the contents of the 
asymmetric unit. Expressions (3) and (6) do not pro- 
duce the correct corresponding result for more than 
a single fragment p. The correct equation for more 
than one fragment corresponding to (2) may be shown 
to be 

n 
EhEkE,~-- ~, ~ EhwEkjvEbp, (3) 

J p 

which is the result employed by the previously cited 
investigators. It was observed (Langs, 1974) that addi- 
tional terms in (2) could be approximated from trans- 
lation-function coefficients, Gh, which are determin- 
able from the squares of known structure-factor 
amplitudes: 

J p 

= 2  ~ ~ ( - - 1 ) 2 h ' ' t j - t k ' l E h j p E h k q l C O S O h s p k q ,  (4) 
j,k p,q 

( j ~ k  if p=q) 

where 

0h,p~q = [2 rr(hj, r p -  hk. rq)+ q~,p- q%q]. 

Under certain circumstances particular terms in (4) 
could be estimated as 

E h E k E ,  ~ ( -  1) 2(h t~+k" b'+' "tr)[ F_%p Ek/p,Eb.f,] 
J p 

× (exp (0hwrp,,+ Okj.f;p"+ cl)~rp,,) 
+ exp ( Ohw~. p, + 01rv"fp' + qSkj.p') 

+exp(Ok~.p,jp+O,;pSp+~hjp)), (7) 

where the averages, as in (6), are performed only over 
the unique non-redundant terms, including those for 
which 0hww=0. Note that the three indicated 
exponential terms are redundant and the average is 
the same whether there are one, two or three terms, 
if the individual estimates of Ohjp~q are error free. The 
average indicated should minimize the effect of these 
errors on the estimate of the invariant. It follows that 
the computed values of these invariants may be 
directly examined for self consistency through inter- 
dependent relationships such as quadruples, 

I~h. k = ( I~h, I "t- I~!, k "-1- l~k_h,l_01 , (8 )  

where l~h, k = ~ h -  ~0k "~- (~0k-h. 

Gh--2(--1)2h'(~-tk)[Eh,pEh~q] COS Ohwkq, (5) 

to provide values of the cosine and sine of 0hjpkq, the 
latter of which were known only in magnitude as 
] s in l=[1-cos2]  t/2. A more complete algebraic 
expression analogous to (3) derived from (2) was 

Trial calculations 

The crystal structure of tetrahymanol hemihydrate 
was used to test the accuracy of phase invariants 
calculated from refined values of molecular trans- 
form product displacement phases estimated from 
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translation-function coefficients. Crystal data: 
C3oH520 • ½H20, monoclinic, P21, a = 7.42, b = 11.43, 
c =30.90/~, fl = 101"9 °, Z = 4 .  the crystal structure 
contains two tetrahymanol molecules in the asym- 
metric unit. The test conditions included (1) the 
known orientation of one of the two molecules, 31 
out of 63 nonhydrogen atoms and (2) the A, B and 
C rings of that molecule (14/63 atoms). The positions 
of these test structures were arbitrarily displaced from 
their true locations in the unit cell. Translation-func- 
tion coefficients, Gh, were calculated and initial values 
of the molecular transform product phases, OhjPkq , 
were determined (Langs, 1985, equations 16, 17) and 
refined (Langs, 1985, equations 13-15). Test model 
(1) yielded 2293 refined transform product phases for 
which (cos(0ref- 0true)) w a s  0.986; test model (2) pro- 
vided 1826 refined phases for which the average 
cosine of the discrepancies was 0.427. These phases 
were used to estimate crystal-structure invariants 
defined by (7). Both triples and single-phase 
seminvariants, E2h,O,2~, were examined for which 
values of Ohjpkq were well determined. The form of 
the Y~I determination relationship for P21 derived 
from (1) can be shown to be 

m 

F__,2h, O,21 = 2 ~, [E2h,O,21P I COS [4"a'( hxp + l z p ) +  ~2h,O,21P] 
p 

-- 2 ~ I~h,o,21Pl(cos Oh, k,~p COS ~h,~lP 
p 

- s i n  Oh,k, lP sin @h,k, tP)k, (9) 

where Oh, k, lP  = [47r( hxp + Izp) + ~Ph.k, lP --  ~ h , - k ,  lP ]  and 
t21)h,k, lP = [ ~2h,O,2lP -I- ~-h ,k , - lP -[- ~-h,-k.-lP] are recog- 
nizable quantities derived from Gh, k,t. All Y~I relation- 
ships are single summations over the m different 
molecular fragments, but do not require phase terms 
relating different molecular fragments as do the multi- 
phase invariants. The h,O,I phase-restricted triples 
require only the real component of (7). Results of the 
~a analysis for test structures (1) and (2) are given 
in Table 1. The analogous results of the triples analysis 
are presented in Table 2. 

Discussion 

The results in Table 1 clearly show that the Y~I esti- 
mates obtained from (9) converge to the values 
computed with the partial structures at their correct 
locations in the unit cell, and as such do not yield a 
reliable estimate for the true crystallographic 
invariant. Such phases should, however, be adequate 
to initiate molecular-fragment tangent refinement, in 
the same way as if they had been computed from the 
fragments had they been located at their correct loca- 
tions in the unit cell. Column 3 of Table 1 indicates 
that of the eight best determined phases via the 
normal Woolfson probability formula (P÷> 0.75 or 

Table 1. ETRUE is the signed value of the crystallo- 
graphic structure factor, P+ is the Woolfson ~1 probabil- 
ity estimate, E (31) is the sign of the structure-factor 
seminvariant calculated with the 31-atom fragment at 
its correct location in the unit cell, and column C(31) 
indicates the sign of the crystallographic invariant calcu- 
lated using the formula indicated in the test section of 

the paper 

H K L E T R U E  P+ E ( 3 1 )  C(31 )  E ( 1 4 )  C ( 1 4 )  

0 0 14 2.53 0-51 - - - + 
2 0 20 -1.62 0.59 . . . .  
2 0 22 2.02 0.61 - - + - 
2 0 24 -1.76 0.18 + + - - 
2 0 26 -2.10 0.80 . . . .  
4 0 -18  2.33 0.17 . . . .  
4 0 - 4  1.99 0.18 - - + - 
4 0 4 1.75 0.38 + + + + 
4 0 18 -3.03 0.25 . . . .  
6 0 - 2 6  -1.85 0.09 . . . . .  
6 0 18 2.39 0-59 - - - + 
6 0 20 -2.51 0.13 - - + + 
6 0 22 -2.70 0.18 + + - - 
8 0 - 1 0  -1.54 0.45 - - + + 

Table 2. Summary of the triple analysis for the 14- 
and 31-atom test examples 

A 0  : 0 h t r u e -  0heale, A t ~  ~--- ~ ) h , k t r u e -  ~h,keale" T r i p l e - p h a s e - i n v a r i a n t  
e s t i m a t e s  a n d  A v a l u e s  c a l c u l a t e d  b y  (3 )  a n d  ( 7 )  a r e  c o m p a r e d .  

T h e  l a s t  r o w  o f  t h e  t a b l e  i n d i c a t e s  t h e  r e s u l t s  o f  a t a n g e n t - f o r m u l a  

r e f i n e m e n t  o f  t h e  p h a s e - i n v a r i a n t  v a l u e s  o f  t h e  p r e c e d i n g  r o w  b y  

m e a n s  o f  q u a d r u p l e  r e l a t i o n s h i p s  d e s c r i b e d  b y  ( 8 )  i n  t h e  t e x t .  

31 a t o m s  14  a t o m s  

N u m b e r  o f  E ' s / 4 2 3  384 359 
(cos AO) 0.988 0.419 

E q u a t i o n  

( 3 )  ( 7 )  ( 3 )  ( 7 )  

N u m b e r  o f  
~ 2 ' s , A > 0 " 0  3904 3904 3539 3539 

( A c o s  A@)/(A) 0.814 0.998 0.801 0.851 

N u m b e r  o f  
Y.2's, A >  1.0 1287 2101 151 618 

(A cos A~I~)/(A) 0.846 0.999 0-866 0.933 
+ Q u a d  Ref  0.999 0.932 

<0.25) three are in error. There are no contrary sign 
indications for any of the fourteen seminvariant 
phases produced by the 31-atom fragment as shown 
in columns 4 and 5 in Table 1, while there are only 
four contrary indications among the fourteen phases 
shown for the 14-atom fragment in columns 6 and 7 
of the table. 

The results of the triples analysis are summarized 
in Table 2. it should be restated that the computed 
values of the triple invariants are expected to 
approach the values of these invariants with phases 
produced with the trial structures at their correct 
locations in the unit cell, and as such should be 
appropriate for determining the correct partial struc- 
ture and initiating tangent-formula recycling of these 
phases. The phase-invariant approach offers an 
important advantage over translation-function 
methods in that it provides the simultaneous place- 
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ment of these multiple fragments. The A values 
associated with these triples may be obtained from 
the magnitude of EhEkE, computed by the chosen 
phase-invariant equation, where A = 
2tr3/tr3/2lEhEkEi] , tY n = ~ Z~, Zj is the atomic number 
of the j th  atom, and the summation is performed over 
the m x n atoms in the primitive unit cell. 384 out of 
the strongest 423 E 's  had determinable values of Oh 
for the 31-atom test case, and similarly 359 for the 
14-atom example. The accuracy of these initial values 
given as ( c o s ( 0 t r u e -  0calc)> was 0.988 and 0.419 respec- 
tively, that is average phase errors of 8-9 and 65 ° . Out 
of the initial set of 4930 triples with A > 1.0 that could 
be generated by the 423 E's,  the 31-atom example 
produced 3904 accessible triples for which 
(A COS(~tr~e--~calc))/(A) was 0-998 by (7) and 0.814 
by (3). The 14-atom example accessed 3539 triples 
for which the corresponding A weighted cosine 
averages were 0.851 and 0.801. If one considers those 
triples that have calculated A values greater than 1.0, 
there are 618 triples computed by (7) with an average 
cosine discrepancy of 0.933 and 151 triples by (3) 
with a corresponding value of 0.866. By contrast, 
there are only 25 unrestricted triples in the original 
list of 4930 that have A values large enough to warrant 
an expected cosine exceeding 0.900, and only one 
that exceeds 0.933. The average error in the estimated 
values of the phases of the crystal-structure invariants 
completed by (7) is about ten times better than that 
produced by (3) in the 31-atom example. Such 
accuracy is unprecedented for estimates of un- 
restricted cosine invariants and would appear to be 
more than adequate to guarantee a structural solution, 

since, for comparison, it is unlikely that any ab initio 
noncentrosymmetric direct-methods analysis has ever 
been performed that has had phase relationships 
approaching this precision. Attempts to improve this 
accuracy further by quadruple phase refinement (8) 
with tangent-formula procedures were surprisingly 
ineffective, in view of the fact that the errors in the 
estimates of the three-phase invariants were not 
expected to be interdependently related with those 
of other triples in a quadrupole relationship. 
Individual observations indicate that these four triple 
estimates do not precisely sum to zero, so that the 
ineffectiveness of this refinement must have some 
other explanation. 

The efforts extended by the referees in examining 
this work are gratefully appreciated. This work has 
been supported in part by NIH grant HL32303 from 
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Abstract 

Correlation functions in reciprocal space are applied 
to 'problem' structures consisting of approximately 
planar molecules stacked in layers. The relative posi- 
tion of two molecular fragments is determined by a 
two-dimensional translation function. With three-or 
four-dimensional translation searches two indepen- 
dent fragments can be positioned relative to one 
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another and, simultaneously, relative to a symmetry 
element. 

Introduction 

Crystal structures consisting of approximately planar 
molecules can often be solved by Patterson methods 
as well as by direct methods. Sometimes direct 
methods are not successful, and experience has shown 
that failures more often occur when the planar 
molecules are stacked in parallel equidistant planes. 
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